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The propagation of a laminar, nonisothermal, weakly swirled liquid
jet along the nonconducting surface of a straight circular cone is ex-
amined. An explanation is given of the influence of the temperature
dependence of the viscosity (assumed to be linear) on the hydrodynamic
characteristics of the jet.

The laws of propagation of a jet source over the
surface of a cone with various boundary conditions for
the temperature and constant physical properties of
the liquid were examined in [1].

In the present paper we present the results of solv-
ing a similar problem for a swirled jet of liquid with
viscosity varying in the flow field. All the other prop-
erties of the liquid (density, thermal conductivity, etc. )
are considered constant.

For a liquid the dependence of viscosity on temper-
ature is very complex. For some liquids this depen-
dence may be represented in the form proposed by
Reynolds {2, 3]:

po=pgexp(—0AT),

while for others the hyperbolic relation
b= po(l+DATY

may be used {4, 5]. In the case of mildly nonisother-
mal flow (this is the case examined below) each of
the expressions for the viscosity is simplified and
may be represented by a linear relation:

p=pe(l1—0AT), AT=T-Ts. (1)

The flow of a weakly swirled nonisothermal liquid
jet over the thermally insulating surface of a cone is
described by the following system of equations of the
laminar boundary layer: *

du Lo Ou _ 0 ( 2__ 2)
ax oy oy ay

(3)

p
ay’

*Strictly speaking, equation (2) for a swirled jet
should be written in the form

u.ﬁ‘i-} Ou W 6p_1_0("6u)‘

ax "3y x ar = dy dy

However, for a weakly swirled jet at a large distance
from the nozzle, the terms w®/x and 8p/9x will be
much smaller than the other terms of the equation,

as follows from the solution obtained below. Therefore,
as was done also in the other cases of weakly swirled
jets [6,7], these small terms are omitted in Eq. (2).
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We will introduce the small parameter « - bQ/AL (L =
= K/p?‘v3w), and represent the components of velocity
and pressure in the form of series in terms of this
small parameter:

U= ly+ ouy + o2, + ...,

0= 0,00, + 0%+ ..., an

W=w,+ow, +o?w,+ ...

We also rewrite (1) as

v=vw(1—m La AT). (12)
Q

Substituting the expansions (11}, in addition to (12),
into the system (2)—(5) and equating coefficients of
the same powers of « on the left and right sides of
the equations obtained, we have the following systems
of zeroth, first, and second order approximations:

u Ou, +o, Oug —. o, '
Ox Jy oy?
2.
4 Ow, +o, ow, L Uy, v, 0%w, ’ (13)
Ox dy x oy?
(xuy) + (xvy) = 0,
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(xu) + —— (xv,) = 0. (16)
ox dy

The system of equations of the zeroth order approxi-
mation (13), with the boundary and integral conditions

Upy=v,=wy =0 wheny=0,

Uy=w,=0 when y= oo
@ y .
\pxué(fpxuody)dy=1<;
h 0
% (4
| px2u0w0[j paoxdy>dy:N
0 i

has the solution [1]

Uy = AxaF'((p), Uy = — A x—i—l
xl@—B+ ) F +poFl,
Wy = Cx* D(p), Ppo—p=Dx>P(g), ¢=Byd,
Q=——, = —— = ——, 6'=—-———,
2 4 ) 1

F=0= % (FLF" —F?),  F,= 17818,

a—/ 3K

P(p)= — 5(1)2@, Torva Ty
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(1, = [ F(Fydg). (17)
. ,

The solution of the energy equation (6) with account
for expressions (17) and the boundary conditions for
temperature (7) is well-known [6]:

AT?l‘xY(-)(cp); YZ_T’
Q 4 ,-T— « —1
- 1 Fod )
r 27p C, sin ¢ l/ 40*ve K [j q):,
hd v
© = exp (—0' \ Fd(p); 0= —. (18)
4 a
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To integrate the first-approximation system of

.equations (14)—(16), we rewrite the components of ve-

locity and pressure in the form
U = A" [ (),
w,=Cx" F (o),
p1= D" T1(g). (19)

Substitution of these expressions into (14)—(16) gives
the following system of ordinary differential equations:

["+ F[+5Ff=(BF", (20)
F' 4+ FF - 3FF = (00) —2f @, (21)
I'=—20F. (22)

In writing down these equations it was assumed that

Al:if‘A, C1=—x£—I‘C;
Q Q

D= M opp g =% .13 U
Q 4 4 2

The functions f, F and 1 must satisfy the following
boundary and integral conditions:

F(0) = F(0) = f(w) = F (o) =TI (o) =0,
? (2FFf—Ff4+FFO—Ffydo +

e @
+ | (F’)‘-’('s fd (p)d(p =0,

0 0

? (FFF+ FfO —f0 + FO'8 —FF)yd ¢ -+
é

P

+ (Fo({fdelde=0. (23)
0 1]

It is known [1] that & = F', and therefore, assuming
that f = F, we may transform Eq. (21) to the form (20).
Bearing in mind the identity of the boundary conditions
for the functions f and F, we come to the conclusion
that, to solve the problem as formulated, it is suffi-
cient to integrate Eq. (20). Introducing the new inde-
pendent variable t = VF/F,,, we rewrite Eq. (20) and
the boundary conditions (23) in the form

e :_2_ 2 i YT — ap
(I =)+ 30¢f 3 Fa y (1= (1 —4£2), (24)
F(O) =F(1) = 0. (25)

The general solution of (24) has the form

; s { 16¢
= (1—4H (1 — | CHCy| —— +
f=(—4r)( )[ o+ .(1 i

5 (1—n* . 10 26+ 1 '
— —In -+ ——=arct = , (26
3 1tivE 3T )] i (26)
where f; is a particular solution of the inhomogeneous
equation (24), which may easily be obtained by ordi-
nary methods, for a specific Prandtl number o. Thus,
for example, for o= 3

10 2

fro 4+ 27
21 105 7)

2 .
fo=?F?»(
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and for 0= 5
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363 , 30 5
—_— - =t 28
- >y ) (28)

For the above values of o, f3(0) = fip(1) = 0, and it
therefore follows from the boundary conditions that
Cl = Cz = Q.

We may verify by a direct check that the functions
found are the desired solution of the problem and also
satisfy the integral condition.

Taking account of Egs. (17), (19), and (20), we
obtain an expression for the dimensionless components
of the longitudinal velocity and of the swirl velocity
in the form

Umo Wmo 3
X(l_l.t__ggtnl (‘)lﬁ_ 227 tm _1_(_)[13) ;
15 6 14 105 21
Q —w I.L F ,\T—J’“ ) (29)
Q

Here, umg = Ax~%/% and Wmp = Cx™ /2 are the maximum
values of the respective velocity components in an
isothermal jet.

It may be seen from the figure that in a mildlynon-
isothermal jet of incompressible liquid, calculation
of the temperature dependence of the viscosity is con-
siderably affected by the pressure field. As in other
flow cases [8], the maximum velocity in a hot jet ap-
proaches the surface washed. The effective jet thick-
ness is diminished, and the friction stress at the
surface of the cone is increased. The latter follows
from analysis of the expression

T Po (1 L_“,m>
Tuwo Hoo ‘ 15 ’

where Tyy is the stress at the surface in isothermal
flow over a cone (Tw = To)-
For a cold jet everything is reversed.

NOTATION

u, v, w are the longitudinal, transverse, and cir-
cular velocity components; p is the density; T is the
temperature, M, v, a, A are the dynamic and kinetic
viscosities, and thermal diffusivity and conductivity;
and conductivity; «, 8, 6, € are the constants in the
similarity transformations; A, B, C, D, I are con-
stants; ¢ = BxBy is a reduced coordinate; F, f, &, f,
7, ® are the dimensionless functions of the coordinate
@; 0= Vy/a is the Prandt]l number; ¢ cone angle; N, K,
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Q are the constants in the integral conditions; 7y isthe
friction stress at the wall; w, Q are small parameters.

Subscripts: w is value at the wall; < is value at an in-
finite distance from the wall.
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The function f{¢) for values of the Prandtl
number o of 3 (1), 5 (2), and 10 (3), pro-
files of dimensionless velocity components
u/umg, W/Wmo for a hot non-isothermal
jet with @ = 0.1 (4), for an isothermal jef
with @ = 0 (5}, and for a cold jet with@ =
= 0.1 (8), the profile of dimensionlesspres-
sure (p — Dy )/(Pw — Pw) in isothermal
flow (7), and the profile of dimensionless
pressure II/(py — pwo) with o= 3 (8).

REFERENCES

1. L. A. Vulis and V. P. Kashkarov, ZhTF, no.
12, 1956.

2. M. Raffi, J. R. Turian, and B. Buron, Chem.
Eng. Sci., 28, no. 11, 1963.

3. S. A. Bostandzhiyan, A. G. Merzhanov, and
S. I. Khudyaev, PMTF [Journal of Applied Mechanics
and Technical Physics], no. 5, 1965.

4. A. K. Pavlin, PMM, 29, no. 5, 1955.

5. S. A. Regirer, PMM, 21, no. 3, 1957.

6. L. A. Vulis and V. P. Kashkarov, Theory of
Viscous Fluid Jets [in Russian], Izd. "Nauka,” Moscow,
1965.

7. L. G. Loitsyansgkii, Tr. Leningradskogo poli-
tekhnicheskogo in-ta im. M. I. Kalinina (tekhniches-
kaya gidromekhanika), no. 5, 1953.

8. V. P. Kashkarov and B. M. Mikhaelyan, Prob-
lems of Thermal Power Engineering and Applied Ther-
mophysics [in Russian], no. 3, Izd. "Nauka," Alma-
Ata, 1966.

13 May 1966 Kazakh University, Alma-Ata



